Chemical Data Assimilation and Air Quality Forecasting using CMAQ

Tianfeng Chai^{1,3}, Rohit Mathur², Daewon W. Byun³, David Wong², Daiwen Kang^{2,4}, Hsin-mu Lin^{1,3}, Daniel Tong^{1,3}, Pius Lee³, Adrian Sandu^{5,} Tianyi Gou^{5,} Peter Percell ⁶

- 1. Science and Technology Corporation, Hampton, VA, USA
 - 2.US EPA, Research Triangle Park, NC, USA
 - 3.NOAA/ARL, Silver Spring, MD, USA
 - 4. Computer Science Corporation, Durham, NC
 - 5. Virginia Tech, Blacksburg, VA, USA
 - 6. University of Houston, Houston, TX, USA

Introduction

- Assimilating real-time observations is essential in weather forecasting
- AIRNOW observations are available in near real time.
 It has potential to be applied operationally for air quality forecasting
- Optimal interpolation (OI) is simple to apply and computation overhead is minimal
- In data assimilation, background error covariance (B) is important
 - Determines the weighting between observations and a priori background
 - Determines the spread of the increment in space and between variables

Optimal Interpolation (OI)

• OI is a sequential data assimilation method. At each time step, we solve an analysis problem

$$X^{a} = X^{b} + BH^{T}(HBH^{T} + O)^{-1}(Y - HX)$$

- We assume observations far away (beyond 1.5 background error correlation length scale) have no effect in the analysis
- In the current study, the analysis is solved in two steps: first in horizontal direction, then vertical

Domain, Grid (100x60), and AIRNOW Stations

Estimate Model Error Statistics with Hollingsworth-Lönnberg Method

- At each station, calculate differences between forecasts
 (B) and observations (O)
- Pair up AIRNOW stations, and calculate the correlation coefficients between the two time series at the paired stations
- Plot the correlation as a function of the distance between the two stations,

Horizontal Error Statistics

E_B ~

14.2 ppbv

E_O ~

3.3 ppbv

Correlation length:

60 km

Ozonesonde: Vertical Error Statistics

Vertical Correlation

Setup of OI Assimilation Tests

- CMAQ 4.6, Model starts at 12Z, 8/5/07
- Hourly AIRNOW observations assimilated in first day
- Model continues to run another day without observations

Observation-Prediction (in ppbv)

Surface O₃ at 1800Z, 8/5/07

Base Case

Ol (Analysis)

Surface O₃ at 1800Z, 8/6/07 (6 hours after OI)

Base Case

OI (Forecast)

4D-Var Data Assimilation

- 1. CMAQ 4.5 Adjoint was developed by A. Sandu *et al* (adjoint available for transport and chemistry)
- 2. Assimilation time window is reduced to 15 hours
- 3. Only initial O₃ are adjusted to minimize the cost functional (using L-BFGS-B routine)

$$J = \frac{1}{2} [c_0 - c_b]^T B^{-1} [c_0 - c_b] + \frac{1}{2} [y - h(c)]^T O^{-1} [y - h(c)]$$

4D-Var.vs. OI

	DA method	В	Bias (Day1)	RMS (Day1)	Bias (Day2)	RMS (Day2)
1	n/a	n/a	8.3	15.9	8.7	16.3
2	4D-Var	Diagonal	-0.8	11.0	7.6	15.6
3	OI	Diagonal	2.6	12.7	7.5	15.8
4	OI	HWV	-1.3	13.2	3.1	12.8
5	4D-Var	HWV	?	?	?	?

Biases and RMS errors are calculated at day time (8am-8pm LT). Units: ppbv.

- 1. 4D-Var (V4.5) gives slightly better results than OI (V4.6)
- 2. "W" denotes Kronecker product and "TSVD" method is used for the inverse of B matrix (Chai, et al, Four dimensional data assimilation experiments with ICARTT ozone measurements, JGR, 2007)

Summary

- CMAQ model error statistics has been estimated using Hollingsworth-Lönnberg method in both horizontal and vertical directions
- Assimilating AIRNOW observations into CMAQ model using Optimal Interpolation proves to be beneficial for the next-day ozone forecasting
- A 4D-Var data assimilation test shows slightly better results than OI with same diagonal B
- Model error covariance results are utilized to assimilate AIRNOW observations with OI approach (B=H™V, implemented using TSVD method), it shows significant improvement over OI with diagonal B